
Benchmarking
Idempotent Work Stealing

Günther Eder Prof. Christoph Kirsch
geder@cosy.sbg.ac.at Supervisor

University of Salzburg
Department of Computerscience

Jakob-Haringer-Strasse 2
5020 Salzburg

Austria
16. 04. 2012

Abstract

We study the trade-off between semantical relaxation,
performance, and scalability of work-stealing stack al-
gorithms. In particular, we analyze four different ver-
sions of which two implement regular work-stealing
stacks [1] and the other two implement semantically re-
laxed variants of work-stealing stacks [3]. In the bench-
marks we descovered that increasing semantical relax-
ation generally leads to increasing performance and
scalability.

1 Introduction

1.1 Introduction

We show the performance and scalability of four dif-
ferent work stealing stack algorithms. Two imple-
ment regular semantics [1] and the other two imple-
ment semantically relaxed variants [3] of work stealing
stacks. We discuss the trade-off of this LIFO imple-
mentations while dealing with balanced and unbalanced
workloads. To improve performance of a data struc-
ture which works in a highly parallel environment we
weaken the semantics of a regular work stealing stack
algorithm. This means we let the implementation de-
viate from the standard work stealing stack implemen-
tation [3]. There are different variations of semantical
deviation [5]. Our approach is to allow elements on the
stack to be returned more then once [3]. This allows us
to use less synchronization.

1.2 Approach

In the following section the different algorithms, their
drawbacks and benefits will be described closer. We
discuss the implementation of the chosen algorithms,
the benchmark and different problems that occoured
during this process. At last we take a look at the bench-
mark results and compare the different algorithms.

2 Algorithms

Four algorithms are tested in this work, two are state of
the art and already well known. The other two deviate
from the regular work-stealing semantics.

2.1 Standard Work Stealing

Each thread has its own local stack (Figure 1) on which
it can apply two operations: put() and take(). A third
operation steal() can be applied to the stacks of the other
threads.

The Work Stealing idea: if a thread is finished with
its local stack and has capacity to work, it should invoke
steal() on another threads stack to balance the workload.

The semantics of the Standard Work Stealing imple-
mentation are strict which means it is a common LIFO
stack. Each element pushed with put() onto the stack,
taken from it with take() or steal() uses a Compare and
Swap (Listing 2) operation. We will refer to Compare
and Swap 2 as CAS in this work. CAS is an atomic
operation that guarantees the correct state of the stack.

1

Figure 1: Work Stealing Setup

2.2 Chase-Lev Workstealing
The Chase-Lev [1] work stealing algorithm is state of
the art and one of the fastest implementations [3] of
this data structure type. Chase-Lev still is a common
LIFO data structure and does not deviate from the reg-
ular Work Stealing semantics, but it is designed to use
less synchronization.

Figure 2: Chase-Lev Stack

In Figure 2 we see the put() and take() operating on
bottom of the threads local stack.

This seems uncommon since a regular stack operates
with push and pull on its top. In this case it is actu-
ally only a formal deviation and results in the same se-
mantics as a regular stack. The steal() operation on the
other hand is accessing the stack on top. Processing
both sides is possible because the Chase-Lev algorithm
is designed to use an array as stack.

Since the owner thread is the only one which can
push data onto the stack, put() requires no synchroniza-
tion. Furthermore take() requires synchronization only
if one element is left on the stack (Figure 2, red circle).
In that case, it could occur that a steal() and take() op-

eration happen at the same time, which would result in
returning one element twice. The steal() operation uses
synchronization in every case, except the stack is empty.

This approach performes well, since the workload on
the local stack is the more important one. The higher
effort for steal() is a small drawback.

2.3 Idempotent Work Stealing

The Idempotent Work Stealing [3] algorithm uses se-
mantical weakening [5]. In this case, it is possible to
get the same object more than once from the stack. This
deviation from the regular semantics allow Idempotent
Work Stealing [3] to use synchronization only in the
steal() operation. The put() and take() operations are
free from atomics. All three operations access the stack
from top as we would suspect from a regular stack.

This lack of synchronization promises improvement
in scalability and performance.

2.3.1 Semantical Deviation

We define semantical deviation [5] in the amount of
times an object can be returned from the stack. By this
definition the Idempotent Work Stealing algorithm has
a worst-case semantical deviation of n-1 (n dependent
on the stack length). This means that in the worst case
the same element is returned as often as the amount of
elements on the stack, minus one.

2.4 WCSD-Low

This new variation of the Idempotent Work Stealing [3]
algorithm has the possibility of a lower worst case se-
mantical deviation or WCSD. This bound is lower or
equal to the semantical deviation of Idempotent Work
Stealing [3], so we call it WCSD-Low.

Structures:
Task: task information, removed flag
LifoIwsq:
anchor: <integer,integer>; // <tail,tag>
capacity: integer
tasks: array of Task

constructor LifoIwsq(integer size) {
anchor := <0,0>;
capacity := size;
tasks := new Task[size];

}

2

void put(Task task) {
Order write in 3 before write in 4

1 <t,g> := anchor;
2 if (t = capacity) {expand(); goto 1;}
3 tasks[t] := task;
4 anchor := <t+1,g+1>;

}

TaskInfo take() {

1 <t,g> := anchor;
2 while (t > 0 && tasks[t].removed == true) t−−;
3 if (t=0) return EMPTY;
4 task := tasks[t−1];
5 anchor := <t−1,g>;
6 return task;

}

TaskInfo steal() {
Order read in 1 before read in 4
Order read in 5 before CAS in 6

1 <t,g> := anchor;
2 while (t > 0 && tasks[t].removed == true) t−−;
3 if (t=0) return EMPTY;
4 a := tasks;
5 task := a[t−1];
6 if !CAS(anchor,<t,g>,<t−1,g>) goto 1;
7 task.removed = true;
8 return task;

}

Listing 1: Pseudo Code WCSD-Low

The only change is an extra attribute (removed) to
keep track, which elements were already removed from
the stack. Checking this attribute is done in the take()
and steal() operation on line 2. Setting it, is only con-
ducted on line 7 in the steal() function. In the steal()
operation we use an atomic CAS to synchronize with
any other stack.

A semantical deviation can only occur if a take() and
steal() operation is in progress at the same time. Since
take() only accesses the own stack, it can happen only
once at a time and of course an arbitrary amount of
steal() operations. To this point the algorithm is iden-
tical to Idempotent Work Stealing [3].

Our new variation WCSD-Low is built under follow-
ing assumption:

• In a situation described above, a steal() operation
will execute line 7 after the CAS on line 6 (List-
ing 1).

• On the next execution of take() it will skip this el-
ement which leads to a lower semantical deviation
as the Idempotent Work Stealing [3] algorithm has.

3 Implementation
In this section we will see details and some problems
concerning the implementation of this benchmark. The
benchmark itself is written in C. Libraries needed in or-
der to be able to compile this project: the math library
to calculate the results and the pthread library to create
threads and barriers.

3.1 Synchronisation
To have a better understanding of the costs of synchro-
nization mechanisms like CAS (e.g. cmgxchg on Intel
based systems), we implemented a benchmark which
shows this overhead. The CAS semantics is shown in
Listing 2. Our test setup is a set of threads, where all
share one memory item. In this case we use a simple
integer variable. Each thread tries to access this shared
variable using read and write operations. To guarantee
a correct state, this can only be accomplished safely by
using atomic operations.

Figure 3: Shared Memory Access High Contention

The first test is accessing the shared memory non-
atomically and the second test uses atomics, but both
with the same semantics (Listing 2). Since we are only
interested in the overhead that atomics cause, the correct
state of the shared variable is less important.

In Figure 3 we can see a red graph which shows the
non-atomic access on the shared memory and a green
graph which pictures the atomic access. We see that the
overhead for synchronization in this basic case is about
a factor of three, not depending on how many threads
we use.

3

function CAS(pointer,old,new){
if ∗pointer == old then

∗pointer := new
return true

else
return false

}

Listing 2: Compare and Swap [2]

3.2 Barriers
In order to start all threads at once we use a pthread
barrier. This barrier implementation is provided by the
POSIX pthread library.

Earlier versions of this benchmark where using busy
waiting loops to synchronize the threads after creation.
This seemed to be slower in some test-cases then the
pthread barrier. It is possible that this is scheduler-
dependent, but was not testet and is left for future work.

3.3 Time Measurement
The rdtsc() instruction returns number of cycles since
the start of the system. In order to calculate the time
consumption we first have to determine the CPU fre-
quence. We use the sleep(1) command and substract the
rdtsc() values before and after from each other. Since
sleep(1) will intercept the program for one second, the
subtraction will give us the number of cycles completed
in one second (Hz).

4 Experiments
In this section we show the results of our benchmark.
We start with the balanced benchmarks where each
thread has the same amount of elements on the stack,
then we show the results for the unbalanced variants.

This results are depending on the work performed be-
tween the pulls, so we show different benchmark results
each using a different amount of work.

Since the allocation for 24 arrays with the size of 200
million took too long, we reduced to the size of 30 mil-
lion elements per array. But we increased the runs per
test up to 15 for better over all test results.

4.1 Workload
The work a thread performs until it pulls the next ele-
ment from a stack we refer to as workload. Simulating
this effort is not trivial, so we used different amounts of
work to get insight how this effects the scalability.

One degree of workload in our benchmark equals
three integer multiplications performed in a loop. In
order to get a higher contention on the data structure we
use less workload, as shown in Table 1.

contention workload
maximum no workload

medium degree one
(three integer multiplications)

low degree three
(nine integer multiplications)

Table 1: Contention & Workload

4.2 Memory Management
We test the stack implementation up to 200 million ele-
ments per stack, which gives us a total of 16 billion el-
ements on 24 stacks, which means 38.4 GByte on a 64
bit architecture only to allocate the arrays. To be able to
handle this amount of data elements only one was ele-
ment allocated and reused for each stack position. The
allocation of the huge arrays takes up to 40 seconds.

An approach for future work would be to extend the
benchmark so it can run without exiting after every con-
figuration, this would lower the allocation overhead.

4.3 Test Environment
For the test we use an Intel Xeon E7 4850 with 4
CPUs 2.0 GHz each, 10 cores/cpu and 2 threads/core
which gives possible 80 threads by 128 GB Ram run-
ning Ubuntu 10.04.3 with Linux kernel 2.6.32.

4.4 Balanced Stack
In Figure 4 we see that the Idempotent Work Steal-
ing [3] algorithm still performs best under maximum
contention but the new variation WCSD-Low is close
behind. Maximum (Table 1) means that there is no work
effort taking place between each take() operation.

When the contention on the stack decreases, the per-
formance of all algorithms becomes more similar, as ex-
pected. If the workload between each take() or steal()
increases, the synchronization is taking less effect on
the result, as we can see in Figure 5 and Figure 6.

4.5 Unbalanced Stack
Figure 7 shows the four algorithms under maximum
(Table 1) contention.

For this benchmark we used a different stack length
for each thread, which could vary upt to 10 percent.

4

Figure 4: Balanced Stack with maximum contention

Figure 5: Balanced Stack with medium contention

Figure 6: Balanced Stack with low contention

Again the Idempotent Workstealing algorithm [3]
performs best. Our results show positive scalability
only until 16 to 20 threads under maximum contention.

Figure 7: Unbalanced Stack with maximum contention

In Figure 8 we see that under less contention the scal-
ability is better. Also the performance for a higher tread
count is better then with maximum contention.

Figure 8: Unbalanced Stack with medium contention

Like in the balanced tests (Figure 6) we can see the
same effect in Figure 9 taking place. As the contention
declines, the results get more similar to each other.

5 Conclusion

Our benchmark shows the performance is dependent on
the workload. If the workload is increasing the perfor-
mance of the data structure decreases and the type of
data structure used is less important.

We see the scalability for all variants, balanced and
unbalanced workload is positive. Only when using high

5

Figure 9: Unbalanced Stack with low contention

or maximum contention the Idempotent Work Steal-
ing [3] can outperform the other implementations.

If a data structure is needed which provides high per-
formance and positive scalability while used under high
contention, our tests show that the Idempotent Work
Stealing [3] algorithm will be the best choice if the se-
mantical deviation is no concern for the task.

6 Acknowledgement
Thanks to Hannes Payer for supplying me with this new
variation WCSD-Low and supporting me in this project.

6

List of Figures
1 Work Stealing Setup . 2
2 Chase-Lev Stack . 2
3 Shared Memory Access High Contention . 3
4 Balanced Stack with maximum contention . 5
5 Balanced Stack with medium contention . 5
6 Balanced Stack with low contention . 5
7 Unbalanced Stack with maximum contention . 5
8 Unbalanced Stack with medium contention . 5
9 Unbalanced Stack with low contention . 6

References
[1] David Chase and Yossi Lev. Dynamic circular work-stealing deque. In Proceedings of the seventeenth annual

ACM symposium on Parallelism in algorithms and architectures, SPAA ’05, pages 21–28, New York, NY,
USA, 2005. ACM.

[2] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13:124–149, January 1991.

[3] Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. Idempotent work stealing. In PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 45–54, New York, NY, USA, 2009. ACM.

[4] Hannes Payer, Harald Roeck, Christoph M. Kirsch, and Ana Sokolova. Performance, scalability, and seman-
tics of concurrent fifo queues. Technical report, Department of Computer Sciences, Jakob-Haringer-Strasse
2, 5020 Salzburg, Austria, 2011.

[5] Hannes Payer, Harald Roeck, Christoph M. Kirsch, and Ana Sokolova. Scalability versus semantics of con-
current fifo queues. In Proceedings of the 30th annual ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, PODC ’11, pages 331–332, New York, NY, USA, 2011. ACM.

7

